Electrochemical Oxidative Formation and Reductive Desorption of a Self-Assembled Monolayer of Decanethiol on a Au(111) Surface in KOH Ethanol Solution.

نویسندگان

  • Takayoshi Sumi
  • Kohei Uosaki
چکیده

Electrochemical oxidative adsorption and reductive desorption of a self-assembled monolayer (SAM) of decanethiol on a Au(111) single crystal electrode were examined in 0.1 M KOH ethanol solution containing various concentrations of decanethiol ranging from 1 muM to 1 mM. Anodic and cathodic current peaks corresponding to the adsorption and desorption of decanethiol, respectively, were observed in cyclic voltammograms of a Au(111) single crystal electrode obtained in 0.1 M KOH ethanol solution containing more than 10 muM of decanethiol. Positions of both peaks depended on the concentration of decanethiol, and they shifted negatively by ca. 0.057 V/decade with increase in decanethiol concentration. This result confirms that the adsorption and desorption of decanethiol is a one-electron process. The reductive charge, which consists of desorption charge and capacitive charge, increased when the sweep rate was decreased and the decanethiol concentration was increased and reached the saturated value of 103 (+/-5%) muC cm-2, which corresponds to the reductive charge of thiol SAM of full coverage with a ( radical3 x radical3)R30 degrees structure. Potentiostatic SAM formation was also investigated by holding the potential at +0.1 V. The reductive charge, i.e., the coverage of the SAM, increased with time and reached the saturated value of 103 (+/-5%) muC cm-2, corresponding to full coverage, after holding the potential at +0.1 V for a certain period of time. The time when the amount of adsorbed thiolate reached full coverage depended on the concentration of decanethiol. The higher the concentration was, the faster full coverage was reached. The desorption peak shifted negatively as the holding time at +0.1 V was increased even after the adsorbed amount had reached full coverage. These results suggest that the ordering of decanethiol SAMs requires a much longer time than the time required for full coverage adsorption. The position of the reductive desorption peak was independent of the thiol concentration if the electrode was kept at +0.1 V for long enough so that a highly ordered SAM was formed. The cathodic peak shifted negatively as the sweep rate was increased, showing that reductive desorption of the SAM was rather slow. The rate constant for the reductive desorption was determined from the potential dependent peak shift to be 0.24 s-1, which is in good agreement with the value obtained for a SAM prepared without potential control, indicating that the quality of the electrochemically prepared SAM is as good as that of the SAM prepared nonelectrochemically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Oxidative Adsorption and Reductive Desorption of the Self-Assembled Monolayer of Decanethiol on Au(111) Surface in KOH Ethanol Solution

The electrochemical characteristics of an Au(111) electrode were investigated in 0.1 M KOH ethanol solutions containing various concentrations of decanethiol. Anodic and cathodic peaks corresponding to the oxidative adsorption and reductive desorption, respectively, of a self-assembled monolayer (SAM) of decanethiol were observed. Both peaks negatively shifted with the increase in the thiol con...

متن کامل

Effects of Concentration and Temperature on the Formation Process of Decanethiol self-assembled monolayer on Au(111) Followed by Electrochemical Reductive Desorption

The formation process of self-assembled monolayer (SAM) of decanethiol (C10SH) on Au(111) single crystal electrode has been investigated for wide range of C10SH concentration (0.1 M ∼ 500 M) and temperature (253 K ∼ 298 K). The amount and quality of C10SH SAM were determined from area and position, respectively, of reductive desorption peak of the SAM modified Au(111) electrode measured in 0....

متن کامل

Electrochemical metal deposition on top of an organic monolayer.

Electrochemical deposition of metals (platinum or gold) only on top of an organothiolate, 1,4-benzenedimethanethiol (BDMT) or hexanedithiol (HDT), self-assembled monolayer (SAM) on a Au(111) substrate was achieved by electrochemical reduction of PtCl(4)(2-) or AuCl(4)(-) ion, which was preadsorbed on one free thiol end group of the dithiol SAM formed on a Au surface, in a metal-ion-free sulfuri...

متن کامل

Aminothiophenol Furfural Self-assembled Gold Electrode Sensor for Determination of Dopamine in Pharmaceutical Formulations

A new Schiff base 2-aminothiophenol furfural self assembled monolayer (SAM) has been fabricated on a bare gold electrode as a novel sensor for determination of dopamine. Electrochemical impedance spectroscopywas utilized to investigate the properties of the Au 2-aminothiophenol furfural self assembled monolayermodified electrode (Au ATF SAM-ME) using the [Fe(CN)6]3-/4- redox couple. The electro...

متن کامل

Organic semiconducting thin film growth on an organic substrate: 3,4,9,10-perylenetetracarboxylic dianhydride on a monolayer of decanethiol self-assembled on Au„111..

We use surface x-ray diffraction to study the structure of organic-organic heterojunctions grown by organic molecular-beam deposition. In particular, we study films of 3,4,9,10-perylenetetracarboxylic dianhydride ~PTCDA! grown on a decanethiol self-assembled monolayer ~SAM! on a Au~111! surface. The deposition of several ('16) monolayers of PTCDA results in unstrained crystalline films whose ~0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 108 20  شماره 

صفحات  -

تاریخ انتشار 2004